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Table S1. List of the 58 languages 
The 58 languages of the dataset, along with their associated Glottolog 
(https://glottolog.org/glottolog/language) and ISO 639-3 codes, the family and subfamily they 
traditionally belong to, their location and geographic coordinates, are listed in TableS1.  
The database partly differs from the one employed in Ceolin et al. (2020). Since our focus here is on 
macro-comparison and not on micro-variation, on the one hand we removed some varieties from the 
Romance, the Greek and the Finno-Ugric families which were minimally different from the other 
related languages of the dataset, and on the other hand we expanded the typological coverage by 
including two Afroasiatic (Semitic) languages (Arabic, Hebrew) and a Niger-Congo (West Atlantic) 
one (Wolof). 
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Language Label  Glottocode Iso 639-3 Code Top-level family Family Location Latitude Longitude 
Afrikaans Afk afri1274 afr Indo-European Germanic Cape Town -33.91 18.42 
Arabic Ar stan1318 arb Semitic West Semitic Riyad 24.71 46.72 
Archi Arc arch1244 aqc NE-Caucasian / Machačkala 42.01 47.26 
Basque_Central cB guip1235 eus Basque Guipuzcoan Vitoria-Gasteiz 42.85 -2.68 
Basque_Western wB bisc1236 eus Basque Biskayan Bilbao 43.26 -2.93 
Bulgarian Blg bulg1262 bul Indo-European Slavic Sofia 42.7 23.32 
Buryat Bur buri1258 bua Mongolic Eastern Mongolic  Ulan-Ude 51.82 107.61 
Calabrese_Northern NCA sout3126 nap Indo-European Romance Verbicaro 39.75 15.19 
Cantonese Can cant1236 yue Sino-Tibetan Sinitic Hong Kong  22.4 114.11 
Danish Da dani1285 dan Indo-European Germanic Copenhagen 55.68 12.57 
Dutch Du dutc1256 nld Indo-European Germanic Amsterdam 52.37 4.89 
English E stan1293 eng Indo-European Germanic London 51.51 -0.13 
Estonian Est esto1258 ekk Uralic Balto-Finnic  Tallinn 59.44 24.75 
Even_1 Ev1 even1260 eve Tungusic Northern Tungusic  Kustur 67.79 130.4 
Even_2 Ev2 even1260 eve Tungusic Northern Tungusic  Sebyan-Kyuyol  65.29 130.01 
Evenki Ek even1259 evn Tungusic Northwestern Tungusic Bomnak 54.71 128.86 
Faroese Fa faro1244 fao Indo-European Germanic Tórshavn 62.01 -6.77 
Finnish Fin finn1318 fin Uralic Balto-Finnic  Helsinki 60.17 24.94 
French Fr stan1290 fra Indo-European Romance Paris 48.86 2.35 
German D stan1295 deu Indo-European Germanic Berlin 52.52 13.4 
Greek Grk mode1248 ell Indo-European Greek Athens 37.98 23.73 
Greek_Calabria CG aspr1238 ell Indo-European Greek Bova Marina 37.93 15.55 
Greek_Cypriot CyG cypr1249 ell Indo-European Greek Larnaca 34.09 33.62 
Hebrew Heb hebr1245 heb Afroasiatic Semitic Tel Aviv 32.11 34.85 
Hindi Hi hind1269 hin Indo-European Indo-Aryan New Delhi 28.61 77.21 
Hungarian Hu hung1274 hun Uralic Ugric  Budapest 47.5 19.04 
Icelandic Ice icel1247 isl Indo-European Germanic Reykjavik 64.14 -21.94 
Irish Ir iris1253 gle Indo-European Celtic Dublin 53.35 -6.26 
Italian It ital1282 ita Indo-European Romance Rome 41.9 12.5 
Japanese Jap nucl1643 jpn Japonic / Tokyo  35.69 139.69 
Kazakh Kaz kaza1248 kaz Turkic Kipchak Almaty 43.22 76.85 
Khanty Kh khan1279 kca Uralic Ugric  Kazym 63.7 67.24 
Korean Kor kore1280 kor Koreanic / Seoul  37.57 126.98 
Kirghiz Kyr kirg1245 kir Turkic Kipchak Bishkek 42.87 74.57 
Lak Lak lakk1252 lbe NE-Caucasian / Kumukh 42.54 47.89 
Malagasy Mal plat1254 plt Austronesian Malayo-Polynesian Antananarivo 18.88 47.51 
Mandarin Man mand1415 cmn Sino-Tibetan Sinitic Beijing  39.9 116.41 
Marathi Ma mara1378 mar Indo-European Indo-Aryan Mumbai 19.08 72.88 
Mari mM mari1278 chm Uralic Volgaic Shap 56.44 47.96 
Norwegian Nor norw1258 nor Indo-European Germanic Oslo 59.91 10.75 
Pashto Pas pash1269 pus Indo-European Iranian Khyber Pass 34.09 71.16 
Polish Po poli1260 pol Indo-European Slavic Warsaw 52.23 21.01 
Portuguese Ptg port1283 por Indo-European Romance Lisbon 38.72 -9.1 
Romanian Rm roma1327 ron Indo-European Romance Bucharest 44.43 26.1 
Russian Rus russ1263 rus Indo-European Slavic Moscow 55.76 37.62 
Serbo-Croatian SC sout1528 hbs Indo-European Slavic Zagreb 45.82 15.98 
Siciliano Sic cent1963 scn Indo-European Romance Mussomeli 37.57 13.75 
Slovenian Slo slov1268 slv Indo-European Slavic Ljubljana 46.06 14.51 
Spanish Sp stan1288 spa Indo-European Romance Madrid 40.42 -3.7 
Tamil Ta tami1289 tam Dravidian  / Madras  13.08 80.27 
Telugu Te telu1262 tel Dravidian / Hyderabad 17.39 78.49 
Turkish Tur nucl1301 tur Turkic Oghuz Ankara 39.93 32.86 

Udmurt Ud udmu1245 udm Uralic Permic Chur 57.07 53.03 

Uzbek Uz uzbe1247 uzb Turkic Turkestan Turkic Tashkent 41.3 69.24 

Welsh Wel wels1247 cym Indo-European Celtic Cardiff 51.48 -3.18 

Wolof Wo nucl1347 wol Niger-Congo West Atlantic Dakar 14.69 -17.44 

Yakut Ya yaku1245 sah Turkic North Siberian Turkic Yakutsk 62.04 129.68 

Yukaghir Yu yuka1259 yux Yukaghir Kolmic (Southern Yukaghir) Kolyma 65.5 151.09 
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Table S2. The dataset (attached, also available at: 
https://github.com/AndreaCeolin/Boundaries/blob/main/TableS2.pdf). 
TableS2 contains the 94 binary nominal parameters used for the experiments presented in the paper, 
set in the 58 languages of TableS1. 
 
The table should be read as follows: 
1st column: progressive number of the parameters (p1, p2, p3, …)  
2nd column: acronym of the parameter  
3rd column: name of the parameter 
4th column: implicational constraints specifying the conditions for setting the parameter. They are 
expressed in a Boolean form, either as simple values of other parameters, or as conjunctions (written 
‘,’), disjunctions (‘or’), or negation (‘¬’) thereof.  
All critical data used to set the parameters have been collected or checked with the help of trained 
native speakers, except for Irish, which has been parameterized based on specialized literature. 
The list of questions used to determine the state of the parameters and instructions is available in 
Crisma et al (2020). 
The order of the parameters is not motivated except for the ease of expression of cross-parametric 
dependencies (see directly below), which are organized from top-down. The alternative parameter 
states are encoded as ‘+’ and ‘-’.  
The neutralizing effect of implicational dependencies across parameters is encoded as ‘0’: the content 
of each parameter in such cases is entirely predictable or altogether irrelevant (the total amount of 
null states is 2534 out of 94x58=5452).  
The parametric database is a refined version of that employed in Ceolin et al. (2020), with some of 
the parameters, their implications, and their relative order reformulated in a descriptively more 
accurate way. 
 
Table S3. Table of Jaccard distances from Table S2 (attached, also available at: 
https://github.com/AndreaCeolin/Boundaries/blob/main/TableS3). 
The matrix was derived using a Jaccard-type distance, based on the Jaccard formula described 
below. The comparison between the distance matrix used in this study and that used in Ceolin et al. 
(2020), for the overlapping languages, yields a Mantel correlation of 0.975 (see Mantel 1967). 
Therefore, it is expected that the exploratory analyses and the phylogenetic modeling of the distance 
matrix obtained from the two datasets will largely overlap. In fact, the results show just minor 
differences. Figures S1-S3 illustrate the major taxonomic results obtained from the distances in 
TableS3. 
 
The distance measures most commonly used for two perfectly aligned binary strings of the same 
length are the Hamming distance (counting the number of positions where the two strings differ) and 
the normalized Hamming distance (obtained dividing the Hamming distance by the string length, so 
that all the distances are within the range [0,1]). If we use ‘+’ and ‘-’ as the binary symbols in the 
strings, as we do in this study (rather than the more usual 0 and 1), the formula for the latter distance 
is: 

ΔHamming(A,B) = [ N-+ + N+- ] / [ N-+ + N+- + N++ + N--] 
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where NXY indicates the number of positions where the string A has value X and B has value Y. When 
the binary strings are interpreted as indicative of the presence (‘+’) or absence (‘-’) of traits (one per 
position in the string), the Jaccard (or Jaccard/Tanimoto) distance encodes an additional refinement: 
the loci where both strings lack the trait (have a value ‘-’) are considered irrelevant and are ignored. 
The formula thus removes N-- from the denominator: 

ΔJaccard(A,B) = [ N-+ + N+- ] / [ N-+ + N+- + N++ ] 
 

Note that in addition to ‘+/-’, syntactic characters display a third state, ‘0’, which indicates that the 
parameter is redundant or irrelevant in a language. Normalised Hamming or Jaccard distances could 
be used to compute linguistic distances, by removing every pair involving a ‘0’ from the computation 
and, crucially, considering ‘+/-’ as the relevant binary values. In a way, when computing distances, 
binary strings are shortened by getting rid of positions where ‘0s’ are present. 
In Longobardi and Guardiano (2009) and Longobardi et al. (2013) a normalized Hamming distance 
has been used to compute linguistic distances. This choice was appropriate given that in the 
framework of Principles & Parameters ‘+/-’ were treated as being of equal markedness status. 
However, recent developments have re-addressed this type of assumption. Specifically, it is agreed 
that certain parameter values are marked, while others can be considered as ‘default’ settings. In our 
system, one of the two opposite values of all parameters (namely ‘-’) represents a default setting, 
which can be interpreted as the absence of a trait, while the other ‘+’ always requires some specified 
empirical evidence to be set (Crisma et al. 2020). Given this asymmetry, we find a Jaccard-type metric 
like the one defined above, rather than a Hamming-type metric, to be more appropriate to encode 
syntactic distances. Therefore, adopting a Jaccard distance corresponds to making the idealization 
that if two languages both change a ‘+’ value into a ‘-’ value in the same parameter, this does not 
constitute evidence of a shared innovation; for, it only represents a resetting to the unmarked state of 
mental grammars. On the contrary, convergence in the opposite change (from ‘-’ to ‘+’) is taken as 
stronger evidence of shared innovation. 
Consider also that Franzoi et al. (2020) have developed metric distances alternative to ours in order 
to capture structural dependencies among characters. Their work interestingly shows that variation in 
the choice of distance formulae produces limited perturbations of the robustness of the signal when 
applied to syntactic data. 
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Figure S1. Heatmap 
The distance matrix in Table S3 is visualized through the heatmap in FigureS1. The languages have 
been juxtaposed following the output of a hierarchical clustering algorithm, so that groups of 
languages sharing low distances (in blue) form squares along the diagonal. 
 

 
 
Instructions to visualize the heatmap in the text. 

1.   Go to the page https://software.broadinstitute.org/morpheus/ 
2.  Upload to the page the file jaccard_distances.txt (Table S3) and click the “OK” button to 

visualize the heatmap 
3.  In the “Tools” menu, select the option “Hierarchical clustering”, and then the following options: 

a.   Metric > Matrix values (from a precomputed distance matrix) 
b.   Linkage method > average 
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c.   Cluster > Rows and columns 
Click the “OK” button. 

4.   To visualize the same color distribution as Figure 1, follow the instructions below: 
a.  In the “View” menu, select “Options” 
b.  In the “Color Scheme” window: 

i.   Uncheck the “Relative color scheme” choice 
ii.  “Maximum” > 0.778 
iii. “Add color stop” 
iv. “Selected color” > yellow 
v.  “Selected value” > 0.426 (the mean of the distance matrix) 
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Figure S2. UPGMA tree. 
The tree in Figure S2 has been produced using PHYLIP 
(https://evolution.genetics.washington.edu/phylip.html, Felsenstein 1989), and visualised using the 
Mesquite software (https://www.mesquiteproject.org, Maddison and Maddison 2018). 
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Figure S3. UPGMA (bootstrapped) tree. 

 
 
The UPGMA tree in Figure S3 has been generated using a modified bootstrapping procedure. 
Bootstrapping is used to establish the robustness of the nodes, and to determine whether the internal 
topology of the tree is robust to resampling. 
The bootstrapping technique resamples the whole dataset by selecting each character with equal 
probability and recreating a matrix of the same length. The content of the new matrix is different from 
the original matrix, because some characters might be absent and some others might be present 
multiple times as a consequence of the sampling procedure. This allows one to estimate the robustness 
of the dataset by repeating the same analysis on different samples of the dataset. 
Since the Jaccard distance between two languages excludes all parameters that are set to ‘0’ in either 
one of them, a standard bootstrapping procedure runs the risk of making a pair of languages not 
comparable, because in some replicas the number of identities plus differences can reduce to zero, 
and then yield a zero denominator for the Jaccard formula. For this reason, we decided to adopt a 
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moderated bootstrap procedure, by creating 1000 datasets in which only six parameters are resampled. 
Since the minimum number of comparable parameters between any two languages in the dataset is 
seven, a resampling of six parameters will assure that any two strings are technically comparable by 
means of the Jaccard distance. 
The UPGMA tree presented in the text is a consensus tree resulting from applying UPGMA to the 
1000 replicas of the dataset. 
The bootstrapping technique is insufficient as a device to assess the robustness of clusters with our 
data, and this is one reason to develop the statistical testing strategy presented in the article. The 
divergence between the outcomes of the two procedures is evidenced in Table S2. 
In Table S4, we singled out the nodes which have been tested in the article (1st column), along with 
the result of the statistical test (2nd column) next to their bootstrapping score (3rd column).The rows 
of TableS4 are arranged in decreasing order of the value of the test statistic.  
 
Table S4. The groups of languages tested in the paper and their bootstrapping scores.  
In blue: clusters which test positive to our statistical procedure but receive bootstrap scores <500; in 
red: clusters which test negative to our statistical procedure but receive bootstrap scores >500. 
 

Volgaic/Permic d=0.048 999 

Tungusic/Turkic d=0.158 737 

Korean/Japanese d=0.182 996 

Germanic/Slavic d=0.205 547 

Tungusic-Turkic/Buryat d=0.223 653 

Volgaic-Permic/Balto-Finnic d=0.225 593 

Germanic-Slavic/Greek d=0.244 667 

NE Caucasian/Dravidian d=0.263 596 

Volgaic-Permic-Balto-Finnic/Ugric d=0.275 612 

Greek-Slavic-Germanic/Romance d=0.277 342 

Greek-Slavic-Germanic-Romance/Indo-Iranian d=0.296 342 

Balto-Finnic+Volgaic-Permic-Ugric/Tungusic-Turkic-Buryat d=0.307 360 

Greek-Slavic-Germanic-Romance-Indo-Iranian/Celtic d=0.324 413 

Uralo-Altaic/Yukaghir d=0.342 799 

Wolof/Cantonese-Mandarin d=0.4 864 

Basque/Japanese-Korean d=0.5 517 
 
It is immediately obvious that the two outcomes only partially correlate. In particular they are quite 
complementary in the following cases: 
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1) all the three nodes that include Romance display a bootstrap score below 500, though their mean 
distances are below the statistical threshold. This suggests that, although the significance testing 
algorithm clearly recognizes these groups as families because they are similar enough to each other, 
they also exhibit some accidental similarities with languages outside of their groups. 
2) the case of Uralo-Altaic best exemplifies this case: its bootstrap value is 360, but goes up to 799 if 
we include Yukaghir; however the statistical algorithm suggests that only the former group can be 
safely established. This depends on the fact that Yukaghir exhibits some similarities with Uralic and 
Altaic languages, but not outside of the group, which means that although occasionally UPGMA will 
place Yukaghir within either group, it would rarely place it farther than the Uralo-Altaic node. But at 
the same time, Altaic and Uralic are sufficiently similar to pass the test, though different enough from 
Yukaghir for the whole set not to test positive to it (also cf. the similar case of bootstrap values for 
the three Tungusic languages, among the lower nodes in Fig. S3). 
3) The opposite case is exemplified by two other nodes which are remarkably above 500 but far from 
passing the statistical test: Basque/Japanese-Korean (517) and especially Wolof/Cantonese-Mandarin 
(864). The only explanation for the high bootstrap score of these groups is long-branch attraction 
(Bergsten 2005), because the languages exhibit internal distances higher than the overall mean of the 
sample (0.444 and 0.556, respectively, thus insignificant from the viewpoint of the statistical test), 
but also much lower than with the rest of the dataset. 
 
In conclusion, with this type and amount of characters, a statistical testing procedure such as we 
present in the text resists the effects of accidental similarities and random sampling of taxonomic 
units better than bootstraping techniques. 
 
 
Table S5. Great Circle geographical distances of the languages of the sample (attached, also 
available at: https://github.com/AndreaCeolin/Boundaries/blob/main/TableS5). 
 
This table contains a matrix of Great Circle Distances (in nautical miles) calculated using the 
coordinates in Table S1. Afrikaans was not included. 
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Section S1: Generating possible languages 
Since the characters we used are not independent, the probability of occurrence of each pair using the 
binomial coefficient cannot be calculated. The binomial formula is based on independent trials, and 
therefore does not account for the fact that a specific result of an event might determine the outcome 
of a subsequent event. Therefore, we devised a method to statistically test the probability of 
relatedness for larger language groups using a posterior distribution generated by a population of 
randomly generated strings, thereby broadly following a Bayesian framework.  
Bortolussi et al. (2011) was the first attempt to elaborate a way to randomly generate admissible 
ternary strings of type {+,-,0} compatible with the implicational constraints. The naive idea to 
generate a string at random and discard it when it was not admissible did not work because the 
probability of hitting an admissible string was too low. However, some of the implication rules were 
simple enough to be directly built into the random generator, which thus yielded ‘quasi-admissible’ 
strings totally at random: the result was that the probability of hitting a quasi-admissible string that 
was also admissible became manageable. 
A key property of the algorithm is that it assumes a uniform distribution of admissible languages in 
string selection. The hypothesis of a uniform distribution among possible languages is not 
unproblematic. In Table S6, for instance, languages with a ‘-’ at the first parameter are selected by 
the algorithm with a probability of 0.25, disregarding any information arising from the sample (for 
instance, the fact that they can be as frequent in the world as languages with ‘+’ at P1). This is because, 
owing to the implicational rules, out of the eight combinatorial possibilities only four different 
languages exist which in reality represent the entire space of variation, and therefore each one is 
chosen with a probability of 1/4.  
Therefore, a uniform distribution over languages tends to include languages bearing exceptional 
similarity to each other as the parameter values that activate many other parameters tend to be 
overrepresented with respect to those that neutralize them. This results in the production of too low a 
mean distance between the random language pairs.  
We decided to modify the algorithm to account for all the implicational constraints in the random 
generator: we first set the independent parameters and created the strings incrementally, and then 
explored only those parameters that were compatible with the implicational structure, while 
automatically assigning a ‘0’ value to the other parameters.  
This strategy requires that a probability be associated to each value for each parameter. Therefore, 
we estimated the probabilities using the empirical distribution of the parameter values in our sample. 
This empirical estimate should also help us better control for biases towards certain parameter settings 
produced by general and external factors, to the extent they are detectable from the real-language 
sample. However, the 58 languages of our sample fall into 15 well-established families, therefore one 
can safely assume that these languages have ultimately evolved from 15 ancestors, and the probability 
of parametric values must be calculated considering this fact. Since such families are instantiated by 
an unbalanced number of languages, we took into account the cardinality of each language family in 
our sample, so as to enable the probabilistic information arising from each of them to be equally 
weighted in the generation of possible languages. We defined a ‘family-ratio’ as the ratio of ‘+’ values 
for a certain parameter in the languages of a family over the total number of non-zero values. Every 
hypothetical language is generated with each parameter value having a ‘+’ with probability equal to 
the arithmetic average of the family-ratios for ‘+’ in that parameter within our sample. This means 
that, for the purposes of our algorithm, each language family is represented as an independent 
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observation. All the implied values are automatically assigned a ‘0’ by the algorithm. Thus, we ensure 
that in the case of a sample like the one shown in Table S6, the languages are ‘+’ or ‘-’ with p=0.5, 
using the distributional information of the sample as an approximation of the space of variation (see 
Table S7). Note that the actual variation in our real sample is almost always different from what 
would be expected from the equiprobability assumption, and that each parameter might exhibit 
different average ratios. Our algorithm takes both facts into consideration while generating the strings. 
 
 
Table S6 – The sampling algorithm of Bortolussi et al. (2011). Each language is sampled with the 
same probability, implying that the space of the distribution is biased towards those parameters which 
have a lot of dependencies. In this case, +P1 languages cover 75% of the space of variation, while -
P1 languages cover 25% of it.  
 

 L1 L2 L3 L4 L5 L6 L7 L8 

P1 + + + + - - - - 

P2 (only if +P1) + + - - 0 0 0 0 

P3 (only if +P2) + - 0 0 0 0 0 0 

Probability of L_ 0.25 0.25 0.25 0.25 

 
Table S7 - The new sampling algorithm. Languages are created with ‘+’ values assigned following 
the average ratio. Therefore, the languages which are set on parameter values that activate several 
others parameters are not overweighted, and the distribution is determined by the average of the 
empirical values of the languages of the real sample. 
 

 L1 L2 L3 L4 L5 L6 L7 L8 Average ‘+’ ratio 

P1 + + + + - - - - 0.50 

P2 (only if +P1) + + - - 0 0 0 0 0.50 

P3 (only if +P2) + - 0 0 0 0 0 0 0.50 

Probability of L_ 0.125 0.125 0.25 0.50  
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